如果r 小于m,那么pr/qh=0,并且q/prh=0。经过一些计算,得出的
结果是我们已经挑中其中都是白球的口袋的机会等于
m + 1
o
n + 1
我们现在想知道下一次拿出的球是白球的机会是多少。经过进一步的计
算,结果这种机会等于
mm
+
+ 12
。
注意这个结果是不以n 为转移的,并且如果m 大,它就非常接近1。
在上面的简略叙述中,我并没有把关于归纳问题的论证包括进去,我将
把那些论证推到后一个阶段去讨论。我将首先研究概率的某种解释的适当
性,就这个问题可以与有关归纳的问题分开的限度内进行考察。
第三章有限频率的解释
在本章内我们要研究的问题是关于“概然性”的一种非常简单的解释。
首先我们必须证明这种解释满足第二章的公理,然后再初步考察这种解释可
以在多大范围内囊括“概然性”这个词的通常用法。我将把这种解释叫作“有
限频率说”,以区别于后面我们将要研究的另一种频率说。
有限频率说从下面的定义出发:
设日是任何一个有限集合,而A 是任何一个另外的集合。我们想确定任
意选择的日的一个分子为A 的一个分子的机会,比方说,你在街上遇见的第
一个人名叫斯密土的机会。我们把这种概率定义为B 的分子也是A 的分子的
数除以日的总数的商。我们用A/B 这个符号来表示它。
显然给予这样定义的概率一定是一个有理分数或者就是0 或1。
几个具体的例子就可以让我们看清楚这个定义的意义。一个任意挑选的
小于10 的整数为质数的机会是多少?有9 个整数小于10,其中5 个是质数;
所以机会是5/9。假定你不知道我的生日,那么在我去年生日那天剑桥下雨
的机会是多少?如果剑桥下雨的天数是m,那么机会就是m/365。一个人在伦
敦电话簿里出现为斯密士这个姓的机会是多少?为了解决这个问题,你必须
先数一下在“斯密士”这个姓下面的项目,然后数一下全部项目,并以后面
的数去除前面的数。从一副纸牌里随便抽出的一张纸牌为黑桃的机会是多
少?显然是13/52,即1/4。如果你已经抽出一张黑桃,那么你再抽出一张黑
桃的机会是多少?答案是12/51。一次掷出的两个骰子,数目加起来为8 的
机会是多少?骰子有36 个可能出现的给局,其中有5 个数目加起来为8,所
以机会是5/36。
显然就许多简单例子来说,上面的定义所得的结果符合于概然性的习惯
用法。现在让我们擦究一下给予这样定义的概然性是否满足那些公理。
我们现在必须把公理中出现的字母p,q 和h 当作类或命题函项,而不是
命题。我们不说“h 蕴涵p”,而说“p 包含h”;“p 和q”代表p 和q 两类
的共同部分,而“p 或q”则代表由所有属于p 或q 或者同时属于p 与q 两类
的项目所构成的类。
我们的公理是:
I.p/h 只有一个唯一的值。除了在h 为零,因而p/h=%的情况外,这个
公理为真。因此我们假定h 不为零。
II.p/h 的可能值是所有从0 到1 的实数。照我们的解释,它们将仅是有
理数,除非我们能找到一种方法把我们的定义扩展到无限类。这并不是容易
做到的事,因为当除法涉及到的数目是无限数的时候不能得出唯一的结果。
III.如果h 包含于p,那么p/h=1。在这种情况下,h 与p 的共同部分是h,
所以根据我们的定义就可以得出上面的结果。
IV. 如果h 包含于非p,那么p/h=O。从我们的定义就可以看出这一点,
因为在这种情况下h 与p 的共同部分是零。
V.合取公理。照我们的解释来讲,h 的分子同时为p 和q(的分子所占的
比例数等于h 的分子同时为p 的分子所占的比例数乘以p 与h 的分子同时为
q 的分子所占的比例数。假定h 的分子数为a,同时属于P 和h 的分子数为b,
而同时属于p,q 和h 的分子数为c。那么h 的分子同时为p 和q 的分子所占
的比例数是c/a;h 的分子同时为p 的分子所占的比例数是b/a,而p 和h 的
分子同时为q 的分子所占的比例数是c/b。这样我们的公理就得到了证实,
因为c/a=b/ax c/b。
VI.析取公理。如果保留上面所说的a,b,C,的意义,并让d 为h 的分子
同时为p 或q 或者同时属于p 与q 两类的分子数,而e 为h 的分子同时为q
的分子数,那么照我们现在的解释来讲,这个公理就表示:
d bec
a
=
a
+
a
-
a, 即d = b + e -c,
这又是很明显的一个结果。
这样,如果h 是一个有分子的有限类,那么这就可以满足我们的公理,
只要不把概率的可能值限为有理分数的话。
由此可以看出数学的概率论照上面的解释来讲是正确的。
可是我们还需要看一下给予这样定义的概率的范围,这种范围初看似乎
过于狭小,不能满足我们对于概率的应用所抱的期望。
首先,我们希望能够说出某个特定事件具有某种特点的机会,而不仅仅
是某一类中某个未经指定的分子所具有的机会。例如:你已经掷出两个骰子,
但是我还不曾看到结果。对我来说,你掷出双六的机会是多少?我们想能够
说出它是1/36,而如果我们的定义不允许我们这样说,它就不能充分满足我
们的要求。在这种情况下,我们说我们把一个事件仅仅当作某一类的一个实
例来看待;153 我们说如果把a 只当作B 类中的一个分子,那么它属于A 类
的机会是A/B。但是“把一个特定事件仅仅当作某一类的一个分子来看”所
表示的意思是不很明确的。这样一种情况所包含的内容是:我们已知一个事
件的某种特点,这种特点凭借比我们所有的更为完备的知识,足以使这个事
件唯一确定下来;但是只凭借我们的知识,我们就没有方法确定它是否属于
A 类,尽管我们确实知道它属于B 类。你在掷出骰子以后知道掷出的结果是
否属于双六这一类,但是我却不知道这一点。我仅有的一点有关的知识是它
是36 个可能的掷出结果之一。或者看一看下面的问题:美国身材最高的人居
住在衣阿华州的机会是多少?有人也许知道他是谁;至少有着一种发现他是
谁的方法。如果使用这种方法成功,那就出现一个不包含概然性在内的确定
答案,即他要么在衣阿华州居住要么不在衣阿华州居住。但是我却没有这种
知识。我可以说衣阿华州的人口为m,而美国人口为n,并且说相对于这些数
据来说,他在衣阿华州居住的概率是M/n。这样当我们说到一个具有某种特
点的特定事件的概率时,我们就总要把借以计算概率的有关数据确定下来。
我们可以概括他讲:已知任何一个物体a,并且已知a 是B 类的一个分
子,我们说凭借这个数据,按照上面所说的概率的定义,a 是A 类的一个分子
的概率是A/B。这个概念是有用的,因为我们常常充分知道某个物体,使得
我们可以唯一确定地给它下出定义,而无需知道它是否具有这种或那种属
性。“美国身材最高的人”是一个确定的描述,这个描述适用于一个并且只
适用于一个人,但是我并不知道他是什么人,因而他是否居住在衣阿华州对
我来说仍然是个未决的问题。“我要抽出的一张牌”是一个确定的描述,并
且我立刻就会知道这个描述是否适用于一张红牌或是一张黑牌,但是现在我
还不知道。正是这种很常见的关于特定物体的部分无知的情况使得在特定的
物体身上应用概率成了有用的东西,而不仅是应用到类中完全没有确定的分
子身上。
虽然部分无知是使上面的概率形式有用的原因,概率这个概354 念却不
包含什么无知,这个概念对于全知来说仍然具有和对于我们来说同样的意
义。全知会知道a 是否为一个A,但是全知仍然可以说:凭借a 是一个B 这
个数据,a 是一个A 的概率是A/B。
在把我们的定义应用到特定的实例时,在某些情况下存在着一种可能发
生的意义上的含混。为了弄清楚这一点,我们必须使用性质而不是类的说法。
设A 类由性质φ确定,而B 类由性质ψ确定。接着我们说:
a 在已知它具有性质φ的条件下具有性质ψ的概率被定义为同时具有性
质φ和ψ的事物对于具有性质ψ的事物之比。我们用“φa”来表示“a 具有
性质φ”。但是如果a 在“φa”内出现不止一次,那就会出现一种意义上的
含混。举例说,假定“φa”是“a 自杀了”,即“a 杀死a。