若以海平面为
0 点,则珠穆朗玛峰的高度约为+8848 米,最深的马里亚纳海沟深约-11034
米。在日常生活中,人们常用“+”表示收入,用“-”表示支出。可是在历
史上,负数的引入却经历了漫长而曲折的道路。
古人在实践活动中遇到了一些问题:如两人相互借用东西,对借出方和
借入方来说,同一东西具有不同的意义;再如从同一地点,两人同时向相反
方向行走,离开出发点的距离即使相同,但其表示的意义却不同。久而久之,
古人意识到仅用数量表示一个事物是不全面的,似乎还应加上表示方向的符
号。因此为了表示具有相反意义的量和解决被减数小于减数等问题,逐渐产
生了负数。
我国是世界上最早使用负数概念的国家。《九章算术》中已经开始使用
负数,而且明确指出若“卖”是正,则“买”是负;“余钱”是正,则“不
足钱”是负。刘徽注《九章算术》,定义正负数为“两算得失相反”,同时
还规定了有理数的加、减法则,认为“正、负术曰:同名相益,异名相除。”
这“同名”、“异名”即现在的“同号”、“异号”、“除”和“益”则是
“减”和“加”,这些思想,西方要迟于中国八九百年才出现。
印度在公元 7 世纪才采用负数,公元 628 年,印度的《婆罗摩修正体系》
一书中,把负数解释为负债和损失。在西方,直到 1484 年,法国的舒开才给
出了二次方程的一个负根。1544 年,德国的史提菲把负数定义为比任何数都
小的数。1545 年,意大利的卡当著《大法》,成为欧洲第一部论述负数的著
作。虽然负数早已出现在人们的计算过程中,但却迟迟得不到学术界的承认,
直到 17 世纪,数学、力学、天文学获得广泛发展,使用负数可以大大简化计
算,所以负数才正式进入了数学。特别是 1637 年,法国数学家笛卡尔发明了
解析几何学,建立了坐标点,将平面点与负数、零、正数组成的实数对应起
来,使负数得到了解释,从而加速了人们对负数的承认。但直到 19 世纪,德
国数学家魏尔斯特拉斯等人为整数奠定了逻辑基础以后,负数才在现代数学
中获得巩固的地位。
无理数的风波
无限不循环小数叫无理数。据说,它的发现还曾掀起一场巨大的风波。
公元前 6 世纪,古希腊有个毕达哥拉斯学派——一个宗教、科学和哲学
性质的帮会,在数学研究上有很大成绩,以勾股定理、无理数的研究最为著
名。毕达哥拉斯学派有一个信条:宇宙间的一切数都能归结为整数或整数之
比。毕氏的一个门徒希伯索斯,在研究等腰直角三角形斜边与一直角边之比,
或正方形对角线与其一边之比时,发现其比不能用整数之比表达时,便很吃
惊。他们证明了这个数不是整数,绞尽脑汁也找不到这个分数,所以希伯索
斯等人阐述了这个发现。因其理论违背毕氏学派的信条而引起同伴们的狂
怒,竟被抛入大海。另有传说,毕氏学派规定,每当有新的发现发明,都要
保守秘密,不得外传,否则要受到严厉制裁。他们发现无理数后,视无理数
为一种不能言说的记号。有一门徒泄露了这一发现,便遭到覆舟毙命的惩罚。
然而真理是封不住的,不管毕氏门徒如何反对,无理数终于闯入了数的圣地,
使数的概念又扩展了一步。无理数是稠密的,任何两个有理数之间,不管它
们多么接近,都存在着无限多个无理数。
真实的虚数
“虚数”这个名词,使人觉得挺玄乎,好像有点“虚”,实际上它的内
容却非常“实”。
虚数是在解方程时产生的。求解方程时,常常需要将数开方,如果被开
方数是正数,就可以算出要求的根;但如果被开方数是负数,那怎么办呢?
比如,方程x2 +1= 0,x2 = -1,x= ± 1。那么 1有没有意义呢?很
早以前,大多数人都认为负数是没有平方根的。到了 16 世纪,意大利数学家
~
卡当在其著作《大法》(1545年)中,把 15记为R· m·15,这是最早
的虚数记号。但他认为这仅仅是个形式表示而已。1637 年法国数学家笛卡
尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。
1777年,欧拉在一篇论文中首次用“i”来表示 1,但以后很少有人注意它。
直到 19 世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示
a+bi,称为复数,虚数才逐步得以通行。
由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活
中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种
种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认
为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”
欧拉尽管在许多地方用了虚数,但又说一切形如
1、 2的数学式都是不可能有的,纯属虚幻的。
继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来
表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复
数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在
水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内
容。真是:虚数不虚!
虚数的发展说明了:许多数学概念的产生并不直接来自实践,而是来自
思维,但只有在实际生活中有了用处时,这些概念才能被接受而获得发展。
π的“马拉松计算”
圆的周长同直径的比值,一般用π来表示,人们称之为圆周率。在数学
史上,许多数学家都力图找出它的精确值。约从公元前 2 世纪,一直到今天,
人们发现它仍然是一个无限不循环的小数。因此,人们称它为科学史上的“马
拉松”。
关于π的值,最早见于中国古书《周髀算经》的“周三经一”的记载。
东汉张衡取π=3.1466(又取π= 10)。第一个用正确方法计算π值的,要算
我国魏晋之际的杰出数学家刘徽,他创立了割圆术,用圆内接正多边形的边
数无限增加时,其面积接近于圆面积的方法,一直算到正 192 边形,算得π
3927
=3.14124,又继续求得圆内接正3072边形时,得出更精确的π= =3.1416,
1250
割圆术为圆周率的研究,奠定了坚实可靠的理论基础,在数学史上占有十分
重要的地位。
随后,我国古代数学家祖冲之又发展了刘徽的方法,一直算到圆内接正
22
24576边形,求出3.1415926<π<3.1215927,又求得π = 355(密率),
π =
113 7
(约率),使中国对π值的计算领先了1000年。为此,有人建议把π = 355称为
113
“祖率”,以纪念祖冲之的杰出贡献。
17 世纪以前,各国对圆周率的研究工作仍限于利用圆内接和外切正多边
形来进行。1427 年伊朗数学家阿尔·卡西把π值精确计算到小数 16 位,打
破祖冲之千年的记录。1596 年荷兰数学家鲁多夫计算到 35 位小数,当他去
世以后,人们把他算出的π数值刻在他的墓碑上,永远纪念着他的贡献(而
这块墓碑也标志着研究π的一个历史阶段的结束,欲求π的更精确的值,需
另辟途径)。
17 世纪以后,随着微积分的出现,人们便利用级数来求π值,1873 年算
至 707 位小数,1948 年算至 808 位,创分析方法计算圆周率的最高纪录。
1973 年,法国数学家纪劳德和波叶,采用 7600CDC 型电子计算机,将π
值算到 100 万位,此后不久,美国的科诺思,又将π值推进到 150 万位。1990
年美国数学家采用新的计算方法,算得π值到 4.8 亿位。
早在 1761 年,德国数学家兰伯特已证明了π是一个无理数。
将π计算到这种程度,没有太多的实用价值,但对其计算方法的研究,
却有一定的理论意义,对其他方面的数学研究有很大的启发和推动作用。
运算符号的由来
表示计算方法的符号叫做运算符号。如四则计算中的+、-、×、÷等。
加号“+”是加法符号,表示相加。
减号“-”是减法符号,表示相减。
“+”与“-”这两个符号是德国数学家威特曼在 1489 年他的著作《简算
与速算》一书中首先使用的。在 1514 年被荷兰数学家赫克作为代数运算符
号,后又经法国数学家韦达的宣传和提倡,开始普及,直到 1630 年,才获得
大家的公认。
乘号“×”是乘法符号,表示相乘。1631 年,英国数学家奥特轩特提出
用符号“×”表示相乘。乘法是表示增加的另一种方法,所以把“+”号斜过
来。