制造汽轮机叶片、耐
酸器件、飞机零件等都要用到它。我们日常生活中所用的不锈钢刀、叉、盘
等也是用这种合金钢生产的。
以铁、钴、镍为主要成分的耐热钢,可以在 800℃以上的高温环境中正
常工作。美国宇航局研制的钴基合金,工作环境温度可达 1150℃。而在钢中
加入锯,其工作温度可达 1300~1600℃。在美国“阿波罗”飞船上所用的一
种涂有钼的化合物,能在 2760℃的高温下工作。人们为什么对耐热钢如此感
兴趣呢?这是因为:有了高性能的耐热钢,可以提高火力发电站的蒸汽温度,
从而提高发电厂的热效率(目前发电厂的最高热效率仅为 40%)。而火箭喷
气发动机喷口的工作温度约 1380℃,没有耐高温的喷口,就难以提高火箭的
速度。人们在这方面的研究正逐步深入。
在古典小说中常写到削铁如泥的宝刀,而真正称得上削铁如泥的是硬质
合金钢,它是采用粉末冶金工艺制成的:把难熔的钨、钽、钛、钼等元素的
碳化物的硬质颗粒,与铁合金的粉末混合后压制成型,经高温烧结而成。硬
质合金钢的抗压强度极高,含钴 10%的碳化钨基合金,其强度可达 350~
370kg/mm2(kg 为千克, mm 为毫米),是世界上强度最高的合金。有的硬质
合金钢做成的刀具,在 1400~1500℃下仍然可以高速切削金属。
铝和铝合金
铝在地壳中含量为 7.45%,比铁(5%)还多,是一种资源十分丰富的
金属。但由于它化学性质活泼,与氧结合紧密,因此自然界中不存在天然铝。
铝的冶炼十分困难,人们直到 1854 年才用比氧更活泼的钠把铝从其氧化物中
还原出来,铝因而身价倍增。那时在皇宫中最为珍贵的不是金银钻石而是铝
制的工艺品和餐具。法国统帅拿破仑三世为了炫耀自己的财富,曾花重金为
自己制了一顶铝盔。后来人们发明了电解冶炼铝的方法,铝才得到了广泛应
用。
铝比重小,重量轻,可以用来代替钢铁。它不仅能使设备重量减轻很多,
而且强度高,不怕腐蚀,因而用途广泛。一架现代化的超音速飞机,铝和铝
合金占总重量的 70%;导弹上用铝达 10%~50%;美国“阿波罗”飞船上,
铝占金属总重的 75%;我国第一颗人造卫星“东方红”的外壳也是铝合金。
铝的强度不算低,当加入少量铜、锰、硅、镁等元素形成合金后,其强
度又显著提高,经过一定的处理,甚至会超过一些钢的强度,但重量却比钢
轻很多。有人估算,如果每辆汽车用 300 公斤铝代替钢,光美国一年就可节
省 29 亿加仑的汽油。
铝的导电性能也很好,虽比铜低却高于铁,但它比铜轻 2/3,并且铝导
线散热快,能通过较大电流而不会被烧坏。再加上价格便宜。因此近年来铝
导线数量显著增加。在现代集成电路生产中,人们也用真空刻蚀铝膜来联接
各元件。
铝的导热性能好,几乎是铁的 4 倍,因此在工业上多被用于生产热交换
器和散热器,铝制餐具也大量面市。你天天都在用铝,对吗?
铝容易加工成型,可压成薄板或拉成细丝。铝容易与氧发生反应而在表
面生成一层坚韧的氧化膜。这层膜性质稳定,有较强的抗腐蚀能力,因而适
用于制造防腐设备。
铝反光能力强,可制作反射镜。
铝是非磁性金属,可作为防磁的罗盘盒。
铝没有毒性,是良好的食品包装材料。
铝和铝合金用途很广泛,是一种神通广大的材料,随着科学的发展,铝
的家族还会不断增加新成员。不信,咱们走着瞧!
钛
钛在地壳中含量约为 0.6%,仅次于铝、铁、镁,居金属含量的第四位。
1791 年英国化学家格雷戈尔就发现了钛元素,但直到 1910 年,英国人亨特
才第一次在爆炸器中用钠还原四氧化钛,制得不到 1 克的纯金属钛。因为钛
的高温化学性质活泼,所以必须在与空气和水相隔绝的环境中进行冶炼,在
真空或惰性气体中提纯。因为冶炼技术困难,所以直到 1947 年,全世界才生
产出 2 吨钛。
钛比重小,仅为钢的一半,但强度比钢高。它抗腐蚀性强,甚至能抗王
水的腐蚀。它熔点高,比黄金还高 600℃左右。如此优异的综合性能在金属
中少见,因此钛受到重视。
钛是属于太空时代的金属。它的高强度、小比重的性能,特别适用于生
产超音速飞机和航天器。美国 70%的钛用于航空航天,美国 YF—12A 型战斗
机,用钛量达 93%。
钛的耐高温性能好,是制造涡轮喷气发动机的理想材料,它几乎可以取
代不锈钢和铝合金。利用钛合金代替不锈钢,可使发动机的重量减轻 40%~
50%。
由于钛的抗腐蚀性能好,可用它制造深海潜艇,去探索海底的秘密。钛
也可用于生产化工行业的反应器等设备。
钛目前存在的问题是冶炼困难,产量低。如果在冶炼技术上取得突破,
钛就有可能代替钢铁。因而它被称为“21 世纪的金属”。
形状记忆合金
1961 年,美国海军研究所的一个研究小组领取了一批弯弯曲曲的镍钛合
金丝,人们把它们一根根拉直以便使用。但当它们偶然接近火时,又恢复了
原来的弯曲状态。人们经过研究,搞清了这是材料的一种新效应——形状记
忆效应。后来人们又发现了金镉合金、铜铝镍合金、铜锌合金、铜锡合金等
都具有记忆效应。
为什么会出现形状记忆效应呢?原来每种形状记忆合金都具有一定的转
变温度。在转变温度以上,金属晶体结构是稳定的;在转变温度以下,晶体
处于不稳定结构状态,一旦加热升温到转变温度以上,金属晶体就会回到稳
定结构状态时的形状。
形状记忆合金可以 100%恢复形状,并且反复变形 500 万次,也不会产
生疲劳断裂,因而具有许多奇妙的用途。
为了在月球上收集资料,人们需要有一架像大伞似的天线。而宇宙飞船
的空间有限,怎样才能把它带上天呢?可以用形状记忆合金做成天线,然后
在其转变温度以下叠成一个小球团,带到月球上后,经太阳光加热升温,它
就会像荷花一样徐徐展开成天线。多棒呀!
用形状记忆合金的制成玩具,即使不小心弄变形了,只要用火一烤,它
就会恢复原状。如果用形状记忆合金制造人造关节、人造骨骼等,即使发生
了变形,只要用火一烤就能恢复原状,而不用去找医生了。
还有一种设想是用形状记忆合金制造新型发动机:先让合金记住线圈的
形状,在常温下把它制成电线,把这条电线接在大小不同的两个圆盘上,在
圆盘的一侧加热水,另一侧加冷水。浸在热水中的合金要恢复线圈状,就要
收缩,于是带动圆盘旋转,把热能直接变成机械能,并且水越热,旋转的次
数就越多。用这种方法可以利用工厂、发电厂的废热水来做功,因而前景广
阔。
形状记忆合金开发利用面临的难题是:价格高,加工难。如果未来的研
究解决了这些问题,许多奇妙的产品就会出现在我们面前。
非晶态合金
把粘浆状的熔融金属高速冷却,就可得到性能与一般金属大相径庭的非
晶态合金。普通金属是原子排列很规则的晶体结构,而非晶态合金由于快速
冷凝,原子排列很不规则,不能形成晶体结构,因此它具有奇妙的特性。它
有良好的耐腐蚀性和电磁特性,并且是很好的超导材料和贮氢材料,因而被
称为“梦幻般的金属”。
由于非晶态合金具有优秀的电磁特性而又十分坚硬的特点,特别适于生
产现代化磁头,以便利用高性能的合金磁带。它比一般结晶磁头的耐磨性高
20%,日本 TDK 公司已开始生产这种磁头。
另一个利用方法是用非晶态合金制造变压器的铁芯。普通硅钢铁芯因发
热造成的铁损约每公斤铁芯 1.1 瓦,而非晶态合金仅为 0.4 瓦。但非晶态合
金怕高温,一发热就会变成晶态,影响变压器的性能,各国对此正在研究解
决办法。
氢是最佳的二次能源,广泛使用氢能的一个难题是氢的贮存,而非晶态
合金恰是一种良好的贮氢材料,它吸收和释放氢的速度很快,因而受到重视,
但贮氢量较小,有待进一步改善其性能。
一般材料做成的超导合金,在低温下质地较脆,难以加工,而非晶态合
金却具有适当的韧性和弹性,是一种优异的超导材料。
超导材料
我们日常生活中使用的一切物质都具有电阻,这是一般的常识。但是,
当物体的温度逐渐降低到绝对零度(零下 273.15℃)附近时,其电阻会变成
零。这就是超导现象。
超导现象是 1911 年荷兰科学家温奈斯发现的,他用液氦在零下 269.03
℃下(即绝对温度 4.12K,摄氏 0 度相当于绝对温度 273.15K)冷却水银时,
发现水银电阻完全消失。此时如果在水银中有感应电流,就会一直保持下去。